Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia
نویسندگان
چکیده
[1] Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth >0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence in northwestern Amazonia (5 S-5 N, 60 W70 W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina. Citation: Zhang, Y., R. Fu, H. Yu, Y. Qian, R. Dickinson, M. A. F. Silva Dias, P. L. da Silva Dias, and K. Fernandes (2009), Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, L10814, doi:10.1029/ 2009GL037180.
منابع مشابه
A Multisensor satellite-based assessment of biomass burning aerosol radiative impact over Amazonia
[1] Using spatially and temporally collocated multispectral, multiangle and broadband data sets from the Terra satellite, the role of biomass burning (BB) smoke particles on cloud-free top of atmosphere (TOA) direct shortwave aerosol radiative forcing (SWARF) is examined. A 5-year analysis during the peak biomass burning months of August and September is presented over South America (0 –20 S an...
متن کاملPhysical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions
We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale BiosphereAt...
متن کاملInterannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts
During March and April, widespread burning occurs across farmlands in Indochina in preparation for planting at the monsoon onset. The resultant aerosols impact the air quality downwind. In this study, we investigate the climatic aspect of the interannual variation of springtime biomass burning in Indochina and its correlation with air quality at Mt. Lulin in Taiwan using long-term (2005-2015) s...
متن کاملModeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia
We conduct several sets of simulations with a version of NASA’s Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February–May. Our experiments are designed so that both direct and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009